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ABSTRACT 
The KAoS policy management framework pioneered the use of 
semantically rich ontological representation and reasoning to 
specify, analyze, deconflict, disseminate, enforce, and monitor the 
operation of digital policies. The framework has continued to 
develop over more than a decade, inspired by both technological 
advances and the practical needs of its varied applications. 

1. INTRODUCTION 
In order to cater to continuously changing conditions and 
resources, complex distributed systems must be capable of 
adapting their behavior while they are still running. Digital policy 
provides a means to dynamically regulate the behavior of systems 
at runtime without requiring the consent or cooperation of the 
components being governed. 

The flexibility and power of a policy management framework is to 
a large degree determined by the expressivity and computational 
efficiency of its policy representation. The KAoS Policy Services 
framework [4; 5] was the first to offer an ontology-based 
approach and is currently the most successful and mature of such 
efforts. Although competing approaches for policy representation 
have been advanced, the endorsement by the United States 
National Security Agency’s (NSA) Digital Policy Management 
(DPM) standards effort of the use of ontologies to bridge the gap 
between natural language expressions and machine-interpretable 
specifications has highlighted the value of an ontology-based 
approach [2]. Following collaborative efforts by the DPM 
Architecture Group and IHMC, the KAoS core ontology was 
adopted as a common basis for future ontology-based standards 
efforts [6]. Selected DPM challenges and corresponding rationale 
for an ontology-based policy approach are listed in Table 1 below. 
For a more detailed comparison and assessment of different 
approaches to policy representation and reasoning, see [1; 3]. 
Policy generated at multiple levels of an 
Enterprise cannot be shared 

Can represent policy from multiple 
perspectives and at multiple levels of 
abstraction 

Difficult to identify conflicting or inconsistent 
policies 

Efficient description-logic-based deconfliction 
algorithms 

Multiple policy languages Expressiveness of OWL semantics obviates the 
need for multiple special-purpose languages 

Current implementations not integraged across 
Enterprise 

Can provide end-to-end system integration 
across multiple policy domains 

Difficulty in translating policies from one 
language to another 

Expressiveness of OWL semantics enables 
automatic translation of special-purpose policy 
languages when necessary 

Table 1. How OWL-based Policy Addresses DPM Challenges. 

2. KAOS OVERVIEW 
We have learned that a general purpose ontology-based policy 
framework such as KAoS needs to make the sophistication, 
flexibility, and power of ontological representation and reasoning 
available to people in a simple and understandable manner. In 
response to this requirement, we have developed a three-layer 
policy management architecture that ensures consistency among 
these separate but interdependent sets of components. 

 
Figure 1. KAoS Conceptual Architecture. 

2.1 Three-Layered Architecture 
The basic elements of the KAoS architecture are shown in Figure 
1. The three layers of functionality correspond to three different 
policy representations: 

• Human Interface Layer: This layer uses a hypertext-like 
graphical interface called KPAT (KAoS Policy 
Administration Tool — pronounced as KAY-pat) for policy 
specification in the form of constrained English sentences. 
The vocabulary is automatically provided from the relevant 
core ontologies or application-specific ones. Besides KPAT’s 
use in policy specification and analysis, it is employed for 
administrative tasks such as browsing and loading 
ontologies, and domain and Guard management. The generic 
KPAT interface can be easily customized using policy 
templates or replaced entirely with a custom user interface. 

• Policy Management Layer: Within this layer, OWL is used to 
encode and manage policy-related information. The KAoS 
Distributed Directory Service (DDS) encapsulates a set of 
ontology reasoning mechanisms used for policy 
deconfliction, analysis, and testing. 

• Policy Monitoring and Enforcement Layer: KAoS 
automatically “compiles” OWL policies to a very efficient 
format that can be used for monitoring and enforcement. This 
representation provides the grounding for abstract ontology 
terms, connecting them to the instances in the runtime 
environment and to other policy-related information (e.g., 
dynamic state or history). Extensibility is supported through 
a framework with well-defined interfaces that can be 
enriched to support new kinds of policies. KAoS Guards 
residing in this layer of the software architecture are 
integrated with the controlled application and provide an API 
for policy information querying and decision-making. 



 

 

Within each of the layers, the third-parties may plug-in 
specialized extension components if needed, as described in more 
detail below. Such components are typically developed as Java 
classes and described using ontology concepts in the configuration 
file. They can then be used by KAoS in policy specification, 
reasoning and enforcement. 

2.2 Use of Ontologies in KAoS 
Core and application-specific ontologies. The KAoS core policy 
ontology consists of a set of independent OWL files (available at: 
http://ontology.ihmc.us/ontology.html). They define the root 
concepts for policy-governed actions, actors, places, states, 
history, and situations. Application developers normally extend 
the core ontology with additional application-specific classes, 
properties, and individuals that can be used as vocabulary in 
policy definitions. It is also possible to link application-defined 
concepts to any number of pre-existing ontologies. 

Grounding ontologies in the world. Ontology-based policy 
services dynamically define mappings between class definitions 
and entities in the controlled environment and in the world. This 
can be accomplished in different ways. First, static elements of the 
environment may be defined as individuals in application-specific 
ontologies. For instance, we might describe specific instances of 
robots, a range of existing radio spectrums, or a set of producers 
of weather reports for a given area. In addition, dynamic elements 
of the environment may be registered within KAoS through the 
Guard interface, or information about them can be provided to a 
Guard at policy enforcement time. For instance, at runtime, new 
areas of robot operation can be defined, new weather reports can 
be produced, new radios can be introduced, and new domains, 
roles, or teams can be formed or removed. 

2.3 KAoS Policy Semantics 
Two main types of KAoS policies. KAoS supports two main types 
of policy: authorization and obligation. The set of permitted 
actions is determined by authorization policies that specify which 
actions an actor or set of actors is allowed (positive authorization 
policies) or not allowed (negative authorization policies) to 
perform in a given context. Obligation policies specify actions 
that an actor or set of actors is required to perform (positive 
obligations) or for which such a requirement is waived (negative 
obligations). All other kinds of policies (e.g., delegation, 
teamwork coordination) are built from these two primitive types. 
Basic form of KAoS policies. The basic form of KAoS policies is 
as follows: 
[Actor] is [constrained] to perform [controlled action] which has 
[any attributes] 

[Actor] is a variable that refers to the subject of the policy-
controlled action. Any of the following can be defined as actors: 

• A single actor instance (e.g. Robot32); 

• An actor class or a role (as in role-based access control) 
using an actor class name (e.g. members of class Robot, 
Weather Producer, Team A; all Robots within 50 feet of my 
current location); 

• The complement of some instance or set of instances (e.g. 
any Robot except Robot324); 

• The complement of actor class or set of classes (e.g. any 
Robot that is not Pioneer). 

[constrained] is a variable that refers to the basic type of the 
policy (i.e., positive or negative authorization, positive or negative 
obligation). 

[controlled action] is a variable that refers to the action class that 
will be controlled by the  policy (e.g. Radio Transmission, 
Movement). 

[any attributes] is an optional variable referring to one or more 
attributes of the controlled action. For example, a Radio 
Transmission action may have attributes defining configuration 
parameters, the destination of the transmission, and so forth. 
These attributes will typically be used to describe aspects of 
context relating to the controlled action. 
Attributes can be used either as part of simple value restrictions or 
to define a test that dynamically relates two or more separate 
attributes. A simple restriction typically has the form: 
[all | some] [attribute] values are [within the set of enumerated 
instances | of a given type] 
For example, such a restriction allows a policy to say that: 

• A valid credential for a given user must be one of the set of 
recognized credentials. 

• Receivers of a given radio transmission must all be holders 
of a particular security clearance. 

Some policies require the definition of dynamic attributes whose 
values must be tested relative to the values of some other attribute. 
Support in KAoS for this feature allows users to define policies 
that relate to the local context of the action or actor. For example: 

• A robot is authorized to request assistance only from current 
members of its team. 

• Employees are forbidden from using printers belonging to 
departments other than their own. 

• Users are authorized to share documents only if they share a 
common credential. 

Special-purpose reasoning. OWL semantics do not allow the 
expression of the constraints on attributes described above. The 
KAoS role-value-map reasoner solves this problem. In addition, 
KAoS implements a special-purpose reasoner for spatial relations. 
KAoS uses the OWL-Time ontology to reason about time. We 
have developed special-purpose mechanisms to handle delegation 
of authority. We have also developed a meta-reasoner named Kaa 
that uses probabilistic information and maximization of expected 
value to make decisions about policy exceptions (e.g., exceptional 
relaxation of policy constraints) or to incorporate complex 
uncertain runtime information (e.g., risk-adaptive access control). 
KAoS policy refinement mechanisms map from high-level 
policies (e.g., expressions of “Commander’s intent,” or mission-
level objectives) to low-level policies that dictate operational 
aspects of network configuration and operation. As our research 
progresses, we will upgrade our initial static mapping approaches 
with more advanced synthetic methods supported by a planner. 

Obligation policy triggers. Unlike authorization policies, 
obligation policies include triggers that specify the conditions 
under which the required action will be activated (e.g., When two 
hours have elapsed, the operator must terminate the transmission). 
Trigger actions are specified in a manner that is similar to 
controlled actions. Relative attributes are typically used to relate 
the trigger to the obliged action (e.g., “If [some robot] fails, then 
[some robot] must notify its teammates; “If [some message] is of 
class ‘secret’ or greater, [some message] must be logged to the 
audit queue).” 

History and current state of a situation. All policies are defined in 
the context of a Situation, which possesses a history and a set of 
variables describing its current state. History is used to qualify the 



 

 

applicability of the policy relative to past events, while state 
information is used to qualify the applicability of a policy relative 
to values representing the current state of one or more variables. 

Policy precedence reasoning. The ranking of policies by order of 
importance is used in two important phases of policy 
management. In the first case, when a policy is created or updated, 
the policy service must determine whether the new policy is 
consistent with the existing set of policies. If the new policy and 
an existing policy have the same ranking in importance, cover 
overlapping actor, action, and context classes, and have 
conflicting modalities (i.e., authorized/forbidden, 
required/forbidden, required/not required), the new policy is 
rejected and deconfliction recommendations are given to the user. 
If the new policy overlaps with an existing policy and has a 
conflicting modality, but one of the two policies has a higher 
ranking than the other, no deconfliction is required. 

The second case occurs during authorization policy decisions (i.e., 
determining whether or not an action is permitted). As part of this 
process, KAoS collects a set of policies with action classes 
positively classifying the action instance being tested. Policy 
ranking allows KAoS to group applicable policies into sets of 
decreasing importance. At policy creation time, the consistency 
checking mechanism has already assured that the sets are not in 
conflict. At policy decision time, within the policy set with the 
highest priority for a given action, a single positive or negative 
authorization policy will determine whether the action is 
permitted or forbidden. 

KAoS originally relied exclusively on numeric policy priority 
assignments by users to determine how policies should be ranked. 
This mechanism has important performance advantages. 
However, a disadvantage of this approach has been that people 
may have difficulty assigning meaningful priorities and tracking 
how a given policy’s priority relates to the priorities of other 
policies, especially when integrating large numbers of policies 
from different sources. For this reason, we have extended the 
priority mechanism in KAoS to use a powerful logical precedence 
mechanism in addition to numeric priorities. This allows 
administrators to specify an almost-infinite variety of precedence 
relationships among policies (e.g., Jim Hanna’s policies take 
precedence over anyone else’s policies; policies of the domain 
administrator (a role) take precedence over user (another role) 
policies; more recent policies take precedence over older policies; 
superdomain policies take precedence over subdomain policies; 
policies for Pioneer robots take precedence over policies for the 
general robot class; policies about writing to a specific directory 
take precedence over policies about writing to the volume; 
negative authorizations take precedence over positive 
authorizations). 

3. HUMAN INTERFACE LAYER 
KPAT’s generic Policy Editor presents an administrator with a 
starting point for policy construction — essentially, a very generic 
policy statement shown as hypertext. Clicking on a specific link in 
this statement that represents a variable provides users with menu 
choices allowing them to make the generic policy more specific. 

Policies defined using this menu-driven process follow a 
predetermined syntax in constrained natural language for either 
authorization or obligation policies. Authorization policies permit 
or forbid some action while obligation policies either require 
some action to be performed or waive such a requirement. Figure 
2 shows an example of an authorization policy being defined in 
KPAT. 

During use, KPAT accesses the ontologies that have been loaded 
into the DDS and provides the user with the list of choices 
narrowed to the current context of the policy construction. New 
ontology classes and instances needed for specific kinds of 
policies can also be created within KPAT. Since the ontologies 
directly determine what choices are provided to users when they 
build policies,, the correctness of the semantics of the policy is 
dependent only on the correctness of the ontology. KAoS tools to 
automate the process of creating ontologies from the environment 
(e.g., SNMP, WSDL, Java) are designed to further ensure the 
correctness of the ontology. The translation from the form of the 
constrained English policy to its OWL representation in KPAT is 
deterministic, assuring both reliability and consistency. 

 
Figure 2. Authorization Policy in the KPAT Generic Policy 

Editor. 
To further simplify policy construction, KPAT provides a Policy 
Template Editor that allows custom policy editors for a given kind 
of policies to be created by point-and-click methods. For instance, 
if an application will require the definition of several policies 
governing publish/subscribe actions, a custom policy editor can be 
quickly created by limiting choices to just what is needed, thus 
eliminating the requirement for repetitive selections when a given 
type of policy has to be created multiple times. 
As another example of KPAT extensibility, when filling in values 
of type “area,” users are presented with a custom area editor. The 
editor allows them to define a polygonal region on top of a 
domain-specific background map by using the mouse to define 
edge points. 

4. POLICY MANAGEMENT  LAYER 
This layer mediates between the human interface layer and the 
monitoring and enforcement layer. Though other kinds of 
reasoning take place in the top and bottom layers, the middle layer 
is where virtually all the ontological reasoning and representation 
takes place. The higher computational cost of reasoning for policy 
deconfliction and analysis is paid upfront so that policy 
monitoring and enforcement in the lowest layer can be performed 
in a highly efficient manner. 

4.1 Bootstrapping and Basic Policy Reasoning 
An entire KAoS configuration, including application-specific 
ontologies and policies, can be captured declaratively as OWL 
and reused at a later time. During bootstrap, the core policy 
ontology (section 2.2) is loaded into the ontology reasoners 
integrated with KAoS. After bootstrap, application-specific 
ontologies may be loaded. The reasoner maintains information 
about domain structures, registered actors and other entities 



 

 

pertinent to the situation. With respect to policy management, the 
reasoner supports the creation of policies by supplying KPAT 
with lists of vocabulary terms (e.g., all of the action classes which 
can be performed by a given class of actor). Policies can also be 
created, of course, through a programmatic interface. During 
policy analysis the reasoner finds relationships among action 
classes controlled by policies. As policies are distributed to 
Guards (see below), the reasoner classifies existing instances (e.g., 
the list of actors) so that relevant information of other kinds can 
be sent to the Guards at the same time. 

Policy dissemination. When policies are added and modified, or 
when a Guard connects or reconnects to the Distributed Directory 
Service (DDS), the DDS assembles the appropriate update 
information relevant to a particular Guard. An alternative 
mechanism allows direct communication among a group of 
Guards for the exchange of policy and cache updates. We have 
designed this capability for a mobile ad-hoc network environment 
where continuous direct communication between the DDS and the 
Guards is not always possible. When networked communication is 
not available (e.g., disconnected sensors), policies can be directly 
loaded into a standalone Guard. 

During the policy dissemination process, the OWL policy 
representations are converted by the DDS to a form that enables 
the Guards to make complex enforcement decisions very 
efficiently. The algorithm traverses the OWL policy structure and 
“compiles” it into a hash-table-like structure within the Guards. 

5. ENFORCEMENT LAYER 
The Guard is where KAoS meets the controlled system. Its 
primary role is as a policy decision point. Guards register to 
receive policies about particular entities or classes of entities for a 
given set of action classes. Because Guards can save their policies 
and reload them directly from a snapshot, they can be 
bootstrapped in a standalone mode without a need to connect to 
the DDS. This functionality allows policies to govern the actions 
of standalone sensors or similar components. 

 
Figure 3. Conceptual Architecture of the KAoS Guard. 

Guards not only receive information about policies, but also about 
the state of the system and the entities being managed. Guards do 
not by themselves provide monitoring functions, but they do 

provide interfaces to plug in outside monitors or databases 
providing access to external state or event-related information. 

The KAoS Guard Policy Checking Interface provides a set of 
methods that allow checking for: 

• Authorization. If an action is not authorized, an exception is 
thrown with information about the policy that prevented it. In 
some secure applications, however, it would not be desirable 
to release information about the cause of the policy 
exception, so we allow this to be controlled by policy. 

• Obligations. A list of obligations for a given actor is 
returned, sorted in rank order of importance. In addition, if 
there are obligations for other actors that are triggered by an 
external event, then KAoS will try to locate them and 
forward the obligations to them. 

• Configuration options. If a partial description of the action is 
sent to KAoS, a range of allowed values for properties of a 
given action is returned. For instance, if an application were 
to query the Guard about a planned radio transmission, 
information about the maximum power and range of 
frequencies allowed to be used in the given geographical area 
would be returned to it. Disclosure policies would be used to 
filter out unauthorized information in the results. 

In order to support the semantics of complex application-specific 
policies, Guards accommodate a variety of extensions. These can 
be activated on demand, as specified in each Guard’s 
configuration information. Specific extensions are: 

• History Monitor: tracks the history of specific actions and 
allows verifying whether a given history is present (e.g., 
three successive login failures; obligation fulfillment). 

• State Manager: manages set of environment-specific sensors 
that provide information about dynamic aspects of the 
environment or situation (e.g., threat level, resource 
availability, locations in time or space). 

We are interested in hosting the KAoS Guard on a tamper-proof 
platform (e.g., the DRS Secure Core Module) for deployment of 
KAoS in sensitive environments. 

We believe that the KAoS ontology-based policy management 
approach holds great promise for the challenges of complex 
distributed applications. Due to space limitations, we have been 
able to describe KAoS only in limited fashion. Readers are 
referred to [4; 5] and to http://ontology.ihmc.us/ontology.html for 
more complete information. 
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