

The KAoS Policy Services Framework
Jeffrey M. Bradshaw, Andrzej Uszok, Maggie Breedy, Larry Bunch, Thomas C. Eskridge,

Paul J. Feltovich, Matthew Johnson, James Lott, and Micael Vignati
Florida Institute for Human and Machine Cognition (IHMC), Pensacola, FL

{jbradshaw, auszok, mbreedy, lbunch, teskridge, pfeltovich, mjohnson, jlott, mvignati}@ihmc.us

ABSTRACT
The KAoS policy management framework pioneered the use of
semantically rich ontological representation and reasoning to
specify, analyze, deconflict, disseminate, enforce, and monitor the
operation of digital policies. The framework has continued to
develop over more than a decade, inspired by both technological
advances and the practical needs of its varied applications.

1. INTRODUCTION
In order to cater to continuously changing conditions and
resources, complex distributed systems must be capable of
adapting their behavior while they are still running. Digital policy
provides a means to dynamically regulate the behavior of systems
at runtime without requiring the consent or cooperation of the
components being governed.

The flexibility and power of a policy management framework is to
a large degree determined by the expressivity and computational
efficiency of its policy representation. The KAoS Policy Services
framework [4; 5] was the first to offer an ontology-based
approach and is currently the most successful and mature of such
efforts. Although competing approaches for policy representation
have been advanced, the endorsement by the United States
National Security Agency’s (NSA) Digital Policy Management
(DPM) standards effort of the use of ontologies to bridge the gap
between natural language expressions and machine-interpretable
specifications has highlighted the value of an ontology-based
approach [2]. Following collaborative efforts by the DPM
Architecture Group and IHMC, the KAoS core ontology was
adopted as a common basis for future ontology-based standards
efforts [6]. Selected DPM challenges and corresponding rationale
for an ontology-based policy approach are listed in Table 1 below.
For a more detailed comparison and assessment of different
approaches to policy representation and reasoning, see [1; 3].
Policy generated at multiple levels of an
Enterprise cannot be shared

Can represent policy from multiple
perspectives and at multiple levels of
abstraction

Difficult to identify conflicting or inconsistent
policies

Efficient description-logic-based deconfliction
algorithms

Multiple policy languages Expressiveness of OWL semantics obviates the
need for multiple special-purpose languages

Current implementations not integraged across
Enterprise

Can provide end-to-end system integration
across multiple policy domains

Difficulty in translating policies from one
language to another

Expressiveness of OWL semantics enables
automatic translation of special-purpose policy
languages when necessary

Table 1. How OWL-based Policy Addresses DPM Challenges.

2. KAOS OVERVIEW
We have learned that a general purpose ontology-based policy
framework such as KAoS needs to make the sophistication,
flexibility, and power of ontological representation and reasoning
available to people in a simple and understandable manner. In
response to this requirement, we have developed a three-layer
policy management architecture that ensures consistency among
these separate but interdependent sets of components.

Figure 1. KAoS Conceptual Architecture.

2.1 Three-Layered Architecture
The basic elements of the KAoS architecture are shown in Figure
1. The three layers of functionality correspond to three different
policy representations:

• Human Interface Layer: This layer uses a hypertext-like
graphical interface called KPAT (KAoS Policy
Administration Tool — pronounced as KAY-pat) for policy
specification in the form of constrained English sentences.
The vocabulary is automatically provided from the relevant
core ontologies or application-specific ones. Besides KPAT’s
use in policy specification and analysis, it is employed for
administrative tasks such as browsing and loading
ontologies, and domain and Guard management. The generic
KPAT interface can be easily customized using policy
templates or replaced entirely with a custom user interface.

• Policy Management Layer: Within this layer, OWL is used to
encode and manage policy-related information. The KAoS
Distributed Directory Service (DDS) encapsulates a set of
ontology reasoning mechanisms used for policy
deconfliction, analysis, and testing.

• Policy Monitoring and Enforcement Layer: KAoS
automatically “compiles” OWL policies to a very efficient
format that can be used for monitoring and enforcement. This
representation provides the grounding for abstract ontology
terms, connecting them to the instances in the runtime
environment and to other policy-related information (e.g.,
dynamic state or history). Extensibility is supported through
a framework with well-defined interfaces that can be
enriched to support new kinds of policies. KAoS Guards
residing in this layer of the software architecture are
integrated with the controlled application and provide an API
for policy information querying and decision-making.

Within each of the layers, the third-parties may plug-in
specialized extension components if needed, as described in more
detail below. Such components are typically developed as Java
classes and described using ontology concepts in the configuration
file. They can then be used by KAoS in policy specification,
reasoning and enforcement.

2.2 Use of Ontologies in KAoS
Core and application-specific ontologies. The KAoS core policy
ontology consists of a set of independent OWL files (available at:
http://ontology.ihmc.us/ontology.html). They define the root
concepts for policy-governed actions, actors, places, states,
history, and situations. Application developers normally extend
the core ontology with additional application-specific classes,
properties, and individuals that can be used as vocabulary in
policy definitions. It is also possible to link application-defined
concepts to any number of pre-existing ontologies.

Grounding ontologies in the world. Ontology-based policy
services dynamically define mappings between class definitions
and entities in the controlled environment and in the world. This
can be accomplished in different ways. First, static elements of the
environment may be defined as individuals in application-specific
ontologies. For instance, we might describe specific instances of
robots, a range of existing radio spectrums, or a set of producers
of weather reports for a given area. In addition, dynamic elements
of the environment may be registered within KAoS through the
Guard interface, or information about them can be provided to a
Guard at policy enforcement time. For instance, at runtime, new
areas of robot operation can be defined, new weather reports can
be produced, new radios can be introduced, and new domains,
roles, or teams can be formed or removed.

2.3 KAoS Policy Semantics
Two main types of KAoS policies. KAoS supports two main types
of policy: authorization and obligation. The set of permitted
actions is determined by authorization policies that specify which
actions an actor or set of actors is allowed (positive authorization
policies) or not allowed (negative authorization policies) to
perform in a given context. Obligation policies specify actions
that an actor or set of actors is required to perform (positive
obligations) or for which such a requirement is waived (negative
obligations). All other kinds of policies (e.g., delegation,
teamwork coordination) are built from these two primitive types.
Basic form of KAoS policies. The basic form of KAoS policies is
as follows:
[Actor] is [constrained] to perform [controlled action] which has
[any attributes]

[Actor] is a variable that refers to the subject of the policy-
controlled action. Any of the following can be defined as actors:

• A single actor instance (e.g. Robot32);

• An actor class or a role (as in role-based access control)
using an actor class name (e.g. members of class Robot,
Weather Producer, Team A; all Robots within 50 feet of my
current location);

• The complement of some instance or set of instances (e.g.
any Robot except Robot324);

• The complement of actor class or set of classes (e.g. any
Robot that is not Pioneer).

[constrained] is a variable that refers to the basic type of the
policy (i.e., positive or negative authorization, positive or negative
obligation).

[controlled action] is a variable that refers to the action class that
will be controlled by the policy (e.g. Radio Transmission,
Movement).

[any attributes] is an optional variable referring to one or more
attributes of the controlled action. For example, a Radio
Transmission action may have attributes defining configuration
parameters, the destination of the transmission, and so forth.
These attributes will typically be used to describe aspects of
context relating to the controlled action.
Attributes can be used either as part of simple value restrictions or
to define a test that dynamically relates two or more separate
attributes. A simple restriction typically has the form:
[all | some] [attribute] values are [within the set of enumerated
instances | of a given type]
For example, such a restriction allows a policy to say that:

• A valid credential for a given user must be one of the set of
recognized credentials.

• Receivers of a given radio transmission must all be holders
of a particular security clearance.

Some policies require the definition of dynamic attributes whose
values must be tested relative to the values of some other attribute.
Support in KAoS for this feature allows users to define policies
that relate to the local context of the action or actor. For example:

• A robot is authorized to request assistance only from current
members of its team.

• Employees are forbidden from using printers belonging to
departments other than their own.

• Users are authorized to share documents only if they share a
common credential.

Special-purpose reasoning. OWL semantics do not allow the
expression of the constraints on attributes described above. The
KAoS role-value-map reasoner solves this problem. In addition,
KAoS implements a special-purpose reasoner for spatial relations.
KAoS uses the OWL-Time ontology to reason about time. We
have developed special-purpose mechanisms to handle delegation
of authority. We have also developed a meta-reasoner named Kaa
that uses probabilistic information and maximization of expected
value to make decisions about policy exceptions (e.g., exceptional
relaxation of policy constraints) or to incorporate complex
uncertain runtime information (e.g., risk-adaptive access control).
KAoS policy refinement mechanisms map from high-level
policies (e.g., expressions of “Commander’s intent,” or mission-
level objectives) to low-level policies that dictate operational
aspects of network configuration and operation. As our research
progresses, we will upgrade our initial static mapping approaches
with more advanced synthetic methods supported by a planner.

Obligation policy triggers. Unlike authorization policies,
obligation policies include triggers that specify the conditions
under which the required action will be activated (e.g., When two
hours have elapsed, the operator must terminate the transmission).
Trigger actions are specified in a manner that is similar to
controlled actions. Relative attributes are typically used to relate
the trigger to the obliged action (e.g., “If [some robot] fails, then
[some robot] must notify its teammates; “If [some message] is of
class ‘secret’ or greater, [some message] must be logged to the
audit queue).”

History and current state of a situation. All policies are defined in
the context of a Situation, which possesses a history and a set of
variables describing its current state. History is used to qualify the

applicability of the policy relative to past events, while state
information is used to qualify the applicability of a policy relative
to values representing the current state of one or more variables.

Policy precedence reasoning. The ranking of policies by order of
importance is used in two important phases of policy
management. In the first case, when a policy is created or updated,
the policy service must determine whether the new policy is
consistent with the existing set of policies. If the new policy and
an existing policy have the same ranking in importance, cover
overlapping actor, action, and context classes, and have
conflicting modalities (i.e., authorized/forbidden,
required/forbidden, required/not required), the new policy is
rejected and deconfliction recommendations are given to the user.
If the new policy overlaps with an existing policy and has a
conflicting modality, but one of the two policies has a higher
ranking than the other, no deconfliction is required.

The second case occurs during authorization policy decisions (i.e.,
determining whether or not an action is permitted). As part of this
process, KAoS collects a set of policies with action classes
positively classifying the action instance being tested. Policy
ranking allows KAoS to group applicable policies into sets of
decreasing importance. At policy creation time, the consistency
checking mechanism has already assured that the sets are not in
conflict. At policy decision time, within the policy set with the
highest priority for a given action, a single positive or negative
authorization policy will determine whether the action is
permitted or forbidden.

KAoS originally relied exclusively on numeric policy priority
assignments by users to determine how policies should be ranked.
This mechanism has important performance advantages.
However, a disadvantage of this approach has been that people
may have difficulty assigning meaningful priorities and tracking
how a given policy’s priority relates to the priorities of other
policies, especially when integrating large numbers of policies
from different sources. For this reason, we have extended the
priority mechanism in KAoS to use a powerful logical precedence
mechanism in addition to numeric priorities. This allows
administrators to specify an almost-infinite variety of precedence
relationships among policies (e.g., Jim Hanna’s policies take
precedence over anyone else’s policies; policies of the domain
administrator (a role) take precedence over user (another role)
policies; more recent policies take precedence over older policies;
superdomain policies take precedence over subdomain policies;
policies for Pioneer robots take precedence over policies for the
general robot class; policies about writing to a specific directory
take precedence over policies about writing to the volume;
negative authorizations take precedence over positive
authorizations).

3. HUMAN INTERFACE LAYER
KPAT’s generic Policy Editor presents an administrator with a
starting point for policy construction — essentially, a very generic
policy statement shown as hypertext. Clicking on a specific link in
this statement that represents a variable provides users with menu
choices allowing them to make the generic policy more specific.

Policies defined using this menu-driven process follow a
predetermined syntax in constrained natural language for either
authorization or obligation policies. Authorization policies permit
or forbid some action while obligation policies either require
some action to be performed or waive such a requirement. Figure
2 shows an example of an authorization policy being defined in
KPAT.

During use, KPAT accesses the ontologies that have been loaded
into the DDS and provides the user with the list of choices
narrowed to the current context of the policy construction. New
ontology classes and instances needed for specific kinds of
policies can also be created within KPAT. Since the ontologies
directly determine what choices are provided to users when they
build policies,, the correctness of the semantics of the policy is
dependent only on the correctness of the ontology. KAoS tools to
automate the process of creating ontologies from the environment
(e.g., SNMP, WSDL, Java) are designed to further ensure the
correctness of the ontology. The translation from the form of the
constrained English policy to its OWL representation in KPAT is
deterministic, assuring both reliability and consistency.

Figure 2. Authorization Policy in the KPAT Generic Policy

Editor.
To further simplify policy construction, KPAT provides a Policy
Template Editor that allows custom policy editors for a given kind
of policies to be created by point-and-click methods. For instance,
if an application will require the definition of several policies
governing publish/subscribe actions, a custom policy editor can be
quickly created by limiting choices to just what is needed, thus
eliminating the requirement for repetitive selections when a given
type of policy has to be created multiple times.
As another example of KPAT extensibility, when filling in values
of type “area,” users are presented with a custom area editor. The
editor allows them to define a polygonal region on top of a
domain-specific background map by using the mouse to define
edge points.

4. POLICY MANAGEMENT LAYER
This layer mediates between the human interface layer and the
monitoring and enforcement layer. Though other kinds of
reasoning take place in the top and bottom layers, the middle layer
is where virtually all the ontological reasoning and representation
takes place. The higher computational cost of reasoning for policy
deconfliction and analysis is paid upfront so that policy
monitoring and enforcement in the lowest layer can be performed
in a highly efficient manner.

4.1 Bootstrapping and Basic Policy Reasoning
An entire KAoS configuration, including application-specific
ontologies and policies, can be captured declaratively as OWL
and reused at a later time. During bootstrap, the core policy
ontology (section 2.2) is loaded into the ontology reasoners
integrated with KAoS. After bootstrap, application-specific
ontologies may be loaded. The reasoner maintains information
about domain structures, registered actors and other entities

pertinent to the situation. With respect to policy management, the
reasoner supports the creation of policies by supplying KPAT
with lists of vocabulary terms (e.g., all of the action classes which
can be performed by a given class of actor). Policies can also be
created, of course, through a programmatic interface. During
policy analysis the reasoner finds relationships among action
classes controlled by policies. As policies are distributed to
Guards (see below), the reasoner classifies existing instances (e.g.,
the list of actors) so that relevant information of other kinds can
be sent to the Guards at the same time.

Policy dissemination. When policies are added and modified, or
when a Guard connects or reconnects to the Distributed Directory
Service (DDS), the DDS assembles the appropriate update
information relevant to a particular Guard. An alternative
mechanism allows direct communication among a group of
Guards for the exchange of policy and cache updates. We have
designed this capability for a mobile ad-hoc network environment
where continuous direct communication between the DDS and the
Guards is not always possible. When networked communication is
not available (e.g., disconnected sensors), policies can be directly
loaded into a standalone Guard.

During the policy dissemination process, the OWL policy
representations are converted by the DDS to a form that enables
the Guards to make complex enforcement decisions very
efficiently. The algorithm traverses the OWL policy structure and
“compiles” it into a hash-table-like structure within the Guards.

5. ENFORCEMENT LAYER
The Guard is where KAoS meets the controlled system. Its
primary role is as a policy decision point. Guards register to
receive policies about particular entities or classes of entities for a
given set of action classes. Because Guards can save their policies
and reload them directly from a snapshot, they can be
bootstrapped in a standalone mode without a need to connect to
the DDS. This functionality allows policies to govern the actions
of standalone sensors or similar components.

Figure 3. Conceptual Architecture of the KAoS Guard.

Guards not only receive information about policies, but also about
the state of the system and the entities being managed. Guards do
not by themselves provide monitoring functions, but they do

provide interfaces to plug in outside monitors or databases
providing access to external state or event-related information.

The KAoS Guard Policy Checking Interface provides a set of
methods that allow checking for:

• Authorization. If an action is not authorized, an exception is
thrown with information about the policy that prevented it. In
some secure applications, however, it would not be desirable
to release information about the cause of the policy
exception, so we allow this to be controlled by policy.

• Obligations. A list of obligations for a given actor is
returned, sorted in rank order of importance. In addition, if
there are obligations for other actors that are triggered by an
external event, then KAoS will try to locate them and
forward the obligations to them.

• Configuration options. If a partial description of the action is
sent to KAoS, a range of allowed values for properties of a
given action is returned. For instance, if an application were
to query the Guard about a planned radio transmission,
information about the maximum power and range of
frequencies allowed to be used in the given geographical area
would be returned to it. Disclosure policies would be used to
filter out unauthorized information in the results.

In order to support the semantics of complex application-specific
policies, Guards accommodate a variety of extensions. These can
be activated on demand, as specified in each Guard’s
configuration information. Specific extensions are:

• History Monitor: tracks the history of specific actions and
allows verifying whether a given history is present (e.g.,
three successive login failures; obligation fulfillment).

• State Manager: manages set of environment-specific sensors
that provide information about dynamic aspects of the
environment or situation (e.g., threat level, resource
availability, locations in time or space).

We are interested in hosting the KAoS Guard on a tamper-proof
platform (e.g., the DRS Secure Core Module) for deployment of
KAoS in sensitive environments.

We believe that the KAoS ontology-based policy management
approach holds great promise for the challenges of complex
distributed applications. Due to space limitations, we have been
able to describe KAoS only in limited fashion. Readers are
referred to [4; 5] and to http://ontology.ihmc.us/ontology.html for
more complete information.

6. REFERENCES
1. Bradshaw, J.M., A. Uszok, and R. Montanari. "Policy-Based Governance of Complex

Distributed Systems: What Past Trends Can Teach Us about Future Requirements." In Agile
Computing, edited by N. Suri. in preparation.

2. National Security Agency (NSA),
Enterprise Services D., Identity and Access Management Branch 2012. Digital policy
management: A foundation for tomorrow. In RSA Conference.
https://ae.rsaconference.com/US12/scheduler/eventcatalog/eventCatalog.do. (accessed
November 29, 2012).

3. Tonti, G., J.M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. "Semantic Web
languages for policy representation and reasoning: A comparison of KAoS, Rei, and Ponder."
In The Semantic Web—ISWC 2003. Proceedings of the Second International Semantic Web
Conference, Sanibel Island, Florida, USA, October 2003, LNCS 2870, edited by D. Fensel, K.
Sycara, and J. Mylopoulos, 419-437. Berlin: Springer, 2003.

4. Uszok, A., J.M. Bradshaw, M.R. Breedy, L. Bunch, P. Feltovich, M. Johnson, and H. Jung.
"New developments in ontology-based policy management: Increasing the practicality and
comprehensiveness of KAoS." In Proceedings of the 2008 IEEE Conference on Policy.
Palisades, NY, 2008.

5. Uszok, A., J.M. Bradshaw, J. Lott, M. Johnson, M. Breedy, M. Vignati, K. Whittaker, K.
Jakubowski, and J. Bowcock. "Toward a Flexible Ontology-Based Policy Approach for
Network Operations Using the KAoS Framework." Presented at the The 2011 Military
Communications Conference (MILCOM 2011) 2011, 1108-1114.

6. Westerinen, A. "Digital Policy Management Ontology Discussion." Presented at the NSA
Digital Policy Management Technical Exchange Meeting, Washington, DC, January 25, 2012.

